Bi-conformal symmetry and static Green functions in the Schwarzschild-Tangherlini spacetimes
نویسنده
چکیده
We study a static massless minimally coupled scalar field created by a source in a static D-dimensional spacetime. We demonstrate that the corresponding equation for this field is invariant under a special transformation of the background metric. This transformation consists of the static conformal transformation of the spatial part of the metric accompanied by a properly chosen transformation of the red-shift factor. Both transformations are determined by one function Ω of the spatial coordinates. We show that in a case of higher dimensional spherically symmetric black holes one can find such a bi-conformal transformation that the symmetry of the D-dimensional metric is enhanced after its application. Namely, the metric becomes a direct sum of the metric on a unit sphere and the metric of 2D anti-de Sitter space. The method of the heat kernels is used to find the Green function in this new space, which allows one, after dimensional reduction, to obtain a static Green function in the original space of the static black hole. The general useful representation of static Green functions is obtained in the Schwarzschild-Tangherlini spacetimes of arbitrary dimension. The exact explicit expressions for the static Green functions are obtained in such metrics for D < 6. It is shown that in the four dimensional case the corresponding Green function coincides with the Copson solution.
منابع مشابه
Magnetized black holes and black rings in the higher dimensional dilaton gravity
In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlin...
متن کاملSpacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملOptimization of Conformal Mapping Functions used in Developing Closed-Form Solutions for Underground Structures with Conventional cross Sections
Elastic solutions applicable to single underground openings usually suffer from geometry related simplification. Most tunnel shapes possess two axes of symmetry while a wide range of geometries used in tunneling practice involve only one symmetry axis. D-shape or horse-shoe shape tunnels and others with arched roof and floor are examples of the later category (one symmetry axis). In the present...
متن کاملNumerical Calculation of Conformally Smooth Hyperboloidal Data
This is the third paper in a series describing a numerical implementation of the conformal Einstein equation. This paper describes a scheme to calculate (three) dimensional data for the conformal field equations from a set of free functions. The actual implementation depends on the topology of the spacetime. We discuss the implementation and exemplary calculations for data leading to spacetimes...
متن کاملr - qc / 0 20 10 45 v 1 1 4 Ja n 20 02 Axial symmetry and conformal Killing vectors
Axisymmetric spacetimes with a conformal symmetry are studied and it is shown that, if there is no further conformal symmetry, the axial Killing vector and the conformal Killing vector must commute. As a direct consequence, in con-formally stationary and axisymmetric spacetimes, no restriction is made by assuming that the axial symmetry and the conformal timelike symmetry commute. Furthermore, ...
متن کامل